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ABSTRACT

Most previous studies of the speedup of parallel branch-and-bound algorithms are i EI

based on the amount of work done in the parallel case and in the sequential case14,17,  \ 2.

Any evaluation of a parallel algorithm should include both the execution time and the
synchronization delay3° . In this paper, a finite population queueing model is used to cap-
ture the synchronization delay in parallel branch-and-bound algorithms and to quantita-
tively predict the behavior of their speedup. A program to solve the Traveling Salesman
Problem was written on a BBN Butterfly2 multiprocessor to empirically demonstrate the
credibility of this theoretical analysis. Finally, we note that similar analyses can be ap-
plied to evaluate parallel Al systems in which processes communicate through a shared
global database.
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1. Introduction

Branch-and-bound is one of the most general methods of solving combina-

torial optimization problems. It has wide applications in the fields of operations

research15 and artificial intelligence2 l . In general, the branch-and-bound method

repeatedly partitions the solution space into smaller and smaller subspaces, and a

lower bound (assuming minimization is to be achieved) of the cost of each sub-

space is estimated. A subspace will no longer be partioned when its lower bound

exceeds the known cost upper bound of the solution space. The first found solu-

tion whose cost does not exceed any lower bound of the partioned solution sub-

spaces is an optimal solution. For a review and formal definition of the branch-

and-bound method, see references10 ' 28 .

Recently there has been wide interest in parallelizing branch-and-bound or

combinatorial search methods on multicomputers. Imai et al.1' proposed a paral-

lel searching scheme for multiprocessors. Wah et al. 29 described a multicomputer

architecture for solving combinatorial search problems. The behavior of parallel

branch-and-bound algorithms has been studied by several researchers 14, 17 , 19 ,23

Three type of anomalies for the speedup of parallel branch-and-bound algorithms

were recognized. The speedup obtained when k processors are used can be (a)

greater than k (acceleration anomalies), (b) between one and k (deceleration

anomalies) or (c) less than one (detrimental anomalies). However acceleration

and detrimental anomalies are unlikely to occur in parallel best-first branch-and-

bound algorithms unless there are a large number of subproblems having the

same lower bound; in addition, a nearly linear speedup can be achieved for a
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large number of processors when the problem size is large7 ,1 s ,23 .

One of the drawback of previous analyses of parallel branch-and-bound algo-

rithm s is that the speedup is based on the amount of work done in the parallel

case and in the sequential case. Any evaluation of a parallel algorithm should

include both the execution time as well as the the synchronization delay3° . In

this paper, using a finite population queuing model, we quantitatively predict the

behavior of the speedup of parallel branch-and-bound algorithms which are paral-

lelized on shared memory multiprocessors. A program to solve the Traveling

Salesman Problem was written on a BBN Butterfly2 multiprocessor to empirically

demonstrate the credibility of this analysis.

In Section 2, a finite population queueing model is reviewed. Section 3

describes a general approach, that serves as the basis for this paper, to paralleliz-

ing branch-and-bound algorithms on multiprocessors. Section 4 describes how

the speedup behavior of parallel branch-and-bound algorithms can be analyzed

using the finite population single server queueing model. Section 5 presents simu-

lation results on a BBN Butterfly machine. Finally, a conclusion which includes

some suggestions about avoiding early saturation in speedup is provided.

2. Finite Population Queueing Model

We now review a queueing model which has been effectively used to predict
26

the performance of interactive time-sharing computer systems . In Figure 2.1 we

have a closed network consisting of a single central server and a finite number of

"sources". This queueing model operates in the following way: When a source

makes a request at the central server, the source "goes to sleep". The request,
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possibly after a queueing delay, then receives service at the central server. When

the request is finally served, the response is fed back to the source. At this point,

the source "wakes up" and starts generating a new request. The time spent by

the source in generating a new request is referred to as its thinking time.

We assume that each source has an average thinking time of X- sec; or

equivalently, each source, when thinking, generates requests at an average rate of

X. The central server has, for each request, an average processing time of p- or

an average processing rate of u. We are interested in the response time of the

central server as seen by a source.

The average response time W can be solved by equating the arrival rate of

requests to the central server to the departure rate from the central server, or by

Little's Formula 13:

- n 1
p(1 - PO) - (2.1)

where n is the number of sources and Po is the probability that there is no out-

standing request at the central server. Define p - . Equation (2.1) then can

be rewritten as

n (2.2)

Since 0 < 1 - Po < 1,

> I n - (2.3)

When the number of sources is large, Po can become very small. Therefore Equa-

tion (2.3) can be considered as an asymptotic approximation for W.

PAI¢
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Note that the distributions of the thinking time of the sources and the pro-

cessing time at the central server do not play a role in the derivation of Equation

(2.2). However, the above informal mean flow analysis is strictly true only for cer-

tain types of service and thinking time distributions, namely an exponential dis-

tribution or rational distribution with round-robin scheduling 13 . Nevertheless, this

model has been found to be surprisingly robust in evaluating systems which

violate most of the strict assumptions26 .

If we assume that the thinking time and the processing time are both

exponentially distributed, then the probability Po can be determined analytically

and is given by 12

P0 = E (O - 1k (2.4)(n k
In Figure 2.2, W as a function of n with p-1 having a value of 40 is plotted.

Kleinrock' 3 defined the saturation number, which we denote by n *, as

n* = 1 + (2.5)
p

Indeed, n* is the maximum number of sources for which requests can be

scheduled without interference.

3. Parallel Best-First Branch-and-Bound Algorithms with a Global

OPEN list

In this paper, we assume that the best-first branch-and-bound algorithms are

parallelized on a tightly-coupled multiprocessor. A globaf OPEN list, which con-

tains the nodes that have been generated but not yet examined in the search tree,

is shared by all the processors. Each node in the OPEN list is a representation of



the root of a subproblem. Initially the OPEN list contains only a representation

of the entire solution space. Each processor then repeatedly removes the best cost

node from the OPEN list, solves the node if it is a solution or decomposes the

node into one or more child nodes, estimates their cost (and possibly eliminates

some of them by applying the dominance relation), and then inserts them into

the global OPEN list in the appropriate positions. The basic task of each proces-

sor is regular iterations of deletion-decomposition-or decomposition-insertion. We

will refer to an entire operation of deletion-decomposition or decomposition-

insertion as one iteration.

The time spent to insert/delete a node into/from the OPEN list depends on

the length of the OPEN list and the discipline used. The length of the OPEN

list can become very large and hence the time taken to delete from and insert

into the OPEN list will not be negligible when compared to the time spent in

decomposition. A processor trying to insert/delete a node into/from the OPEN

list cannot proceed when any other processor is holding the OPEN list. This

introduces a synchronization delay which is ubiquitous in realization of paralle:

algorithms. Multiprocessor systems usually provide some locking mechanisms,

e.g. spin lock and semaphores5 , for users to implement mutually exclusive codes.

Spin lock or busy-waiting is efficient for infrequent and short locking. However,

for frequent lockings which take nonnegligible time, spin lock can result in serious

lose of memory bandwidth and network bandwidth. Moreover if the accessing

order cannot be preserved, programs may execute for arbitrary times since the

performance of heuristic search strongly depends on the order of node examina-

tion. On the other hand, semaphores are recommended for synchronization of the
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OPEN list, in spite of the possible inefficiency due to frequent context switching.

The termination of parallel branch-and-bound algorithms must be handled

carefully. To ensure correctness, a current best solution (sometimes referred to as

the incumbent in the literature) is kept in a globally shared memory. The paral-

lel branch-and-bound algorithm is terminated when either one of the following

conditions is satisfied: (a) There are no active processes and the OPEN list is

empty. (b) There are no active processes and no nodes in the OPEN list have

better cost than the current best solution. In either case the current best solution

(if any) is the global solution. Note that the order of the evaluation of the argu-

ments to the Boolean operator and above is also important. Here we assume the

arguments of and are evaluated from left to right. In condition (a), if the

evaluation order of and is from right to left then it is possible that the OPEN

list is tested true before some active process inserts nodes into the OPEN list and

terminates. Similar arguments hold for condition (b).

The parallelizing scheme we assume here was first proposed by Imei et al l i.

Similar methods were later used by others 20,24 in implementing best-first branch-

and-bound algorithms on shared memory multiprocessors.

4. A Tight Upper Bound for the Speedup of Parallel Best-First

Branch-and-Bound Algorithms

In this section, we show how the finite population queueing model can be

used to predict the speedup of parallel best-first branch-and-bound algorithms.

Recall that in the above parallel branch-and-bound algorithm, each processor

repeatedly decomposes a node and performs OPEN insertion or deletion. The

- r ~,r ~ ~ *.-'- :; v.-~ ~.
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OPEN list can at most be accessed by one processor; the other conflicting proces-

sors must be blocked. It is not difficult to recognize the analogy between the

parallel branch-and-bound algorithm and the finite population queueing model

discussed in Section 2. The processors are the finite sources of this queueing

model. Each processor spends some time (thinking time) decomposing a node

and then sends a request (insertion/deletion) to the OPEN list. A FCFS queue

can be used to handle the requests at the OPEN list. The time spent in

insertion/deletion can be considered as the central server's processing time. Note

that there is no processor dedicated to be the central server.

Let us again assume that the average time spent for a processor to decom-

pose a node is 1 sec. and the time taken to insert/delete a node into/from the

OPEN list, when it is free, has an average of p-1 sec. The node decomposition

time will not be affected by other processes running concurrently, while the

insertion/deletion time could be delayed by other processes trying to access the

OPEN list at the same time. Therefore, the average time spent during an itera-

tion (decomposition-insertion/decomposition-deletion) is 0- + u- 1 in the sequen-

tial case and X-1 + W in the parallel case, where W is the average response time

predicted by Equation (2.1).

Define I, as the total number of iterations executed in a best-first branch-

and-bound algorithm when a single processor is used and I, the total number of

iterations executed when n processors are used. If detrimental or acceleration

anomalies do not exist, I, is at least as large as 11 and they are very close when

the problem size is large1 7 "8 ', .

:k.
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The speedup S(n) for n processors is the ratio between the execution times

when using one processor and using n processors. Hence,

S(n) I, x ( - + )
In X (X-' + W(n))

n

nX X + (4.1)X-1_ + W(,,)

where W(n) is the average response time of the requests at the OPEN list when

n processors are used. Using Equation (2.3) as an asymptotic approximation for

W in Equation (4.1) and letting p - -, we obtain

l+p
S(n) <n x

1 + (n - p)p

or

s(n) < I + !(4.2)
p

In Figure 4.1, speedup S as a function of n is plotted with a p- 1 value of 40.

Note that the speedup saturates very quickly when the number of processors

exceeds the saturation number defined in Equation (2.5) though we have a nearly

linear speedup before that many processors are used. Here, the saturation

number = 41.

Equation (4.1) is obtained with the following assumptions:

a) Equal work between sequential algorithm and parallel algorithm, i.e.

I1 = In.

b) Decomposable computation is fully parallelized among available processors.



c) No process scheduling overhead.

d) No overhead cf locking primitives.

e) No hardware level contention, e.g. memory contention or switch contention.

These assumptions will not be true in practice but can be achieved quite closely

when not many processors are used. Hence the result of Equation (4.1) can be

considered as a tight upper bound.

5. A Simulation Result

To empirically demonstrate this analysis, a parallel branch-and-bound algo-

rithm was implemented on the BBN Butterfly2 using Butterfly Lisp 27 to solve the

Traveling Salesman Problem. Given a set of cities and the distances between each

pair of cities, the TSP is to find a complete shortest tour which visits every city

once and only once. Mohan 20 solved the TSP on the Cm* multiprocessor.

Although the speedup he obtained was less than 8 when 16 processors were used,

he estimated that an almost linear speedup could be achieved for up to 12 proces-

sors if a hardware contention problem (referred to as cluster contention in Cm*)

could be factored out. Rao et al. 24 recently reported an encouraging result in

which they obtained a speedup of 7 on 8 processors when solving the TSP on a

Sequent Balance 8000. The parallelizing strategy that Mohan and Rao et al. used

was basically the same as that illustrated in Section 2.

We did not use Little et al.'s algorithmi9 as both Mohan and Rao et al. did.

We used an algorithm based on the assignment problem 22. Let ci be the dis-

tance between city i and city j. Then the m-city TSP can be stated as:

....... .......
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minimize

j=-m 1=m

j-I i=1

subject to

Xi Oor 1, 1<i<M, 1 <j < m (5.1)
F. Xi- = < j : m (5.2)

j=1
J=M

FXi = <,1 i <_ M (5.3)

If zij = 1, the route from city i to city j is chosen in the tour. Constraints (5.2)

and (5.3) state that there can be only one chosen route which departs from or

comes into each city. However, constraints (5.1), (5.2) and (5.3) do not fully

characterize the solution of the TSP yet, since the solution so obtained may con-

tain several disjoint cycles. Another constraint must be added to exclude those

solutions which contain disjoint cycles.

Figure 5.1 shows an example of a 4-city TSP with cost matrix

00 2030 101
5 co 7 14
8 12 00 3

15 6 11 oo

The algorithm starts by considering the alternative routes departing from city 1,

then city 2, and so forth. The state of a node in the search tree is represented as

a tuple (Xi,,x2i',...,xzk). The cost of the node is the sum of g and h, where

g = C1 , + c2i2 + + ckik and h = the sum of the minimum of each

column of the (m-k)X(m-k) matrix obtained by deleting rows 1 through k and

columns il through it of the cost matrix.

The OPEN list is organized as a heapg in our implementation. Figure 5.2
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shows the speedup curve we obtained to solve a 12-city TSP. The speedup is

almost linear up to 8 processors but only reaches a peak of 12 when 20 processors

are used. In general, the number of iterations executed is slightly higher when

more processors are used. In Figure 5.3 the speedup curve is adjusted by the

number of iterations. That is, if S(n) is the measured speedup for n processors

then the adjusted speedup S(n)* is given by

s(n)" = S(n) x IL

The decomposition time and the OPEN insertion/deletion time were sampled

during execution when 8 processors were used. Figure 5.4 and Figure 5.5 show

the histograms of the OPEN insertion/deletion time and the decomposition time

distributions$. According to the mean decomposition time and mean

insertion/deletion time, the p- value is 14.6. The speedup should saturate at 15.6

by our analysis. However, readers should not take the figures we obtained too

seriously. Some of the decomposition time measured actually includes the time

spent by the incremental garbage collector 4 in the Blisp system t , and hence the

mean decomposition time measured will be slightly higher than it should be. In

addition, the semaphores we used § contain an internal critical region which also

introduces non-negligible synchronization delay.

Note that higher speedup can be expected when solving a TSP with larger

number of cities. This is because the decomposition time is proportional to the

t The BBN Blisp we used was a beta release from BBN. No compiler was available
when this paper was prepared. The interpreter was very slow in absolute terms.

t This can be seen from the extremely high time occurrences in Figure 5.5.
§ The semaphores we used was implemented using futures in Blisp. Futures are very

expensive in the current Blisp version.

-1.
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problem size and larger mean decomposition time will increase the value of p-1 .

6. Discussion and Conclusion

We have demonstrated that the finite population queueing model can be

used to accurately analyze the speedup of parallel branch-and-bound algorithms.

The accuracy is obtained because the synchronization delay is taken into con-

sideration. Certainly, more accurate analysis should include architectural

inefficiency, e.g. memory contention, bus contention, switch contention, etc., and

system overhead, e.g. scheduling overhead, overhead of synchronization primi-

tives, etc. However, this kind of analysis is machine-dependent and its long-term

significance on the design of parallel algorithms is unclear. There is hope that

new technology will reduce the architectural inefficiency and system overhead to

an insignificant amount 25 .

The results we obtained from theoretical analysis and simulation show that

because of the synchronization delay, the speedup of parallel algorithms can

saturate very quickly after a nearly linear speedup up to a certain number of pro-

cessors. This apparently pessimistic result can be used to design more efficient

parallel algorithms. The saturation number defined in Equation (2.5) can be con-

sidered as the maximum number of processors to be used before speedup

saturates. Beyond that parallelism does not help. Extending the saturation

point is equivalent to enlarging the value of p-1 . This can be achieved by increas-

ing X- 1 or decreasing p-1. We could raise X-1 by magnifying the granularity of

the node decomposition. One possible way is to execute more iterations before a

process communicates with the global OPEN list. For heuristic search, this must
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be done carefully since larger granularity means less heuristic-guidance. 1- can

be lowered by better insertion and deletion disciplines for the global OPEN list.

For example, heap insertion and deletion is superior to linear insertion and dele-

tion.

Other optimizing methods are also possible. The OPEN list can be parti-

tioned into several disjoint regions according to different ranges of cost estimation

values. An extreme case is that each region corresponds to a single cost estima-

tion value so that insertion and deletion can be done in O(1) time. This method

was actually used by Rao et al. 24 to solve a 15-puzzle problem. They took

advantage of the fact that the cost estimation function has a small range and can

be predetermined. Since now each region is locked separately the OPEN list

bottleneck could be potentially relieved by a degree of a multiple. The perfor-

mance of the algorithms based on a multiple-region OPEN list can be formally

analyzed by a more general finite source multiple server queueing model.

If the range of the the cost estimation function is not small or cannot be

predetermined, a possible way to alleviate the bottleneck is to organize the global

OPEN list as a concurrent B-tree"' 16 so that insertions and deletions performed

in different subtrees can be possibly executed in parallel.

Finally we note that a similar analysis can be applied to parallel Al systems

whose main communication medium is through a global shared database, e.g. a

blackboardo.
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